

PROGRAMA DE ASIGNATURA Año 2025

ANTECEDENTES GENERALES*

CARRERA	Ingeniería Civil en Procesos de Minerales							
NOMBRE DE LA ASIGNATURA	Termodinámica II							
CÓDIGO DE LA ASIGNATURA								
AÑO/SEMESTRE	Tercer año/semestre V							
TIPO DE FORMACIÓN**	GENERAL (G)			BÁSICA (B)		PRC	PROFESIONAL (P)	
DURACIÓN	SEMESTRAL	SEMESTRAL X		ANUAL		ОТЕ	OTRO (MODULAR)	
FLEXIBILIDAD	OBLIGATORIO (OBLIGATORIO (O) X		ELECTIVO (E)				
CARÁCTER	TEÓRICO-PRÁCTICO (TP)		х	TEÓRI PRÁC	CO Y TICO (T/P)	PRÁ	ACTICA (P)	
MODALIDAD	PRESENCIAL		Х	VIRTU	AL	MIX	MIXTA	
CRÉDITOS SCT	4		•		•	•		
HORAS DE DEDICACIÓN	HORAS PRESENCIALES DIRECTAS	4 T			HORAS DE TRABAJO AUTÓNOMO		3 C	
APRENDIZAJES PREVIOS REQUERIDOS		•			•			

DESCRIPCIÓN DE LA ASIGNATURA

En este apartado se deberá completar el siguiente recuadro de acuerdo con el Plan de estudio vigente decretado, donde se definen las competencias, niveles y resultados de aprendizaje que la asignatura o módulo desarrolla.

Competencia Especifica y/o Genérica	1.2 Domina los fundamentos de las ciencias aplicadas de termodinámica, fenómenos de transporte, ciencias de los materiales, balance de masa y energía y fluidodinámica para la resolución de problemas asociados a los procesos de minerales.
Nivel de Desarrollo de la competencia	1.2.2 Analiza críticamente problemas de las ciencias aplicadas que faciliten la resolución de problemas en el ámbito profesional.
Resultado/s de Aprendizaje	1.2.2.3. Reconoce los conceptos de Termodinámica de sistemas multicomponentes necesarios para discriminar los resultados obtenidos a partir de estos. 1.2.2.4. Soluciona problemas asociados a termodinámica de sistemas multicomponentes considerando la ecuación diferencial de la energía libre de Gibbs.

UNIDADES DE APRENDIZAJE

Unidad de Aprendizaje 1: TERMODINAMICA DE DISOLUCIONES (TEORIA Y APLICACIONES)

- 1.1.- Propiedades Parciales
- 1.2.- Potencial Químico como Criterio de Equilibrio de Fases
- 1.3.- Fugacidad y Coeficiente de Fugacidad para Especies Puras y en Solución
- 1.4.- Sistemas Ideales: Mezclas de Gases Ideales y Solución Ideal
- 1.5.- Propiedades de Exceso. Coeficiente de Actividad
- 1.6.- Modelos de Disolución Ideal: Lewis-Randall y Henry
- 1.7.- Modelos de Energía de Gibbs en Exceso (Margules, Van Laar, Wilson, NRTL, otros)
- 1.8.- Cambio de Propiedades en el Mezclado. Efectos Caloríficos en Procesos de Mezclado

Unidad de Aprendizaje 2: EQUILIBRIO DE FASES

- 2.1.- Equilibrio Líquido-Vapor. Comportamiento Cualitativo de Sistemas Binarios
- 2.2.- Método Gamma-Phi para el Equilibrio Líquido-Vapor
- 2.3.- Ley de Raoult y Ley de Raoult Modificada.
- 2.4.- Equilibrio Sólido-Líquido. Sistemas sin eutécticos y con eutécticos.

Unidad de Aprendizaje 3: EQUILIBRIO EN LAS REACCIONES QUIMICAS

- 3.1.- Coordenada de Reacción. Actividad
- 3.2.- Constante de Equilibrio Químico K. Dependencia de K con la Temperatura
- 3.3.- Evaluación de las Constantes de Equilibrio
- 3.4.- Cálculos de Composiciones de Equilibrio
- 3.5.- Aplicaciones de Reacciones en Metalurgia. Diagrama de Ellingham

Unidad de Aprendizaje 4: DISOLUCIONES IONICAS

- 4.1.- Definiciones básicas (electrolito, iones, clasificación de electrolitos, fuerza iónica)
- 4.2.- Interacciones ion-ion y ion disolvente
- 4.3.- Modelos termodinámicos para los coeficientes de actividad y osmóticos (Pitzer, Bromley, Kusik-Meissner, etc.)
- 4.4.- Solubilidad de electrolitos, dependencia con la temperatura
- 4.5.- Producto de solubilidad. Constante de equilibrio y su dependencia con la temperatura. Ecuación de Van't Hoff.
- 4.6.- Representación del equilibrio sólido-líquido con modelos termodinámicos

ESTRATEGIAS DIDÁCTICAS Y PROCEDIMIENTOS DE EVALUACIÓN

RESULTADOS DE APRENDIZAJE	ESTRATEGIA DIDÁCTICA	ACTIVIDAD DE EVALUACIÓN			
1.2.2.3. Reconoce los conceptos de Termodinámica de sistemas multicomponentes necesarios para discriminar los resultados obtenidos a partir de estos.	Dinámicas de clasePresentacionesDocumentos	Exposición oralInformes y tareasPruebaLaboratorio			
1.2.2.4. Soluciona problemas asociados a termodinámica de sistemas multicomponentes considerando la ecuación diferencial de la energía libre de Gibbs.	Dinámicas de clasePresentacionesDocumentos	Exposición oralInformes y tareasPruebaLaboratorio			

BIBLIOGRAFÍA.

BIBLIOGRAFÍA BÁSICA

- 1. Smith, J., Van Ness, H., Abbott, M. (2003) Introducción a la termodinámica en Ingeniería química (5ª. Ed.); México: Mc Graw- Hill/Interamericana (660.2969 SMI 2003)
- 2. J. M. Prausnitz, R. N. Lichtenthaler, E. Gomez De Azevedo, (2000) Termodinámica Molecular de los Equilibrios de Fases, (3° Ed.); Madrid: Editorial Prentice Hall.
- 3. Galleguillos, H., (2018) Apuntes de Termodinámica II y Apuntes de Disoluciones Iónicas

BIBLIOGRAFÍA COMPLEMENTARIA

1. Robson, M. (2007) An Introduction to Aqueous Electrolyte Solutions. (1° Ed.); US: Editorial John Wiley & Sons