

# PROGRAMA DE ASIGNATURA Año 2025

# **ANTECEDENTES GENERALES\***

| CARRERA                            | Ingeniería Civil en Procesos de Minerales |    |              |                             |                                 |     |                 |  |
|------------------------------------|-------------------------------------------|----|--------------|-----------------------------|---------------------------------|-----|-----------------|--|
| NOMBRE DE LA ASIGNATURA            | Transferencia de energía                  |    |              |                             |                                 |     |                 |  |
| CÓDIGO DE LA ASIGNATURA            |                                           |    |              |                             |                                 |     |                 |  |
| AÑO/SEMESTRE                       | Cuarto año/semestre VII                   |    |              |                             |                                 |     |                 |  |
| TIPO DE FORMACIÓN**                | GENERAL (G)                               |    |              | BÁSICA (B)                  |                                 | PRC | PROFESIONAL (P) |  |
| DURACIÓN                           | SEMESTRAL                                 |    | X ANUAL      |                             | L                               | ОТЕ | OTRO (MODULAR)  |  |
| FLEXIBILIDAD                       | OBLIGATORIO (                             | O) | X ELECTIVO ( |                             | IVO (E)                         |     |                 |  |
| CARÁCTER                           | TEÓRICO-PRÁCTICO<br>(TP)                  |    | Х            | TEÓRICO Y<br>PRÁCTICO (T/P) |                                 | PRÁ | PRÁCTICA (P)    |  |
| MODALIDAD                          | PRESENCIAL                                |    | Х            | VIRTU                       | AL                              | MIX | (TA             |  |
| CRÉDITOS SCT                       | 7                                         |    |              | •                           | •                               |     |                 |  |
| HORAS DE DEDICACIÓN                | HORAS PRESENCIALES DIRECTAS               | 6T |              |                             | HORAS DE<br>TRABAJO<br>AUTÓNOMO |     | 6 C             |  |
| APRENDIZAJES PREVIOS<br>REQUERIDOS |                                           | •  |              |                             | •                               |     | •               |  |

# **DESCRIPCIÓN DE LA ASIGNATURA**

En este apartado se deberá completar el siguiente recuadro de acuerdo con el Plan de estudio vigente decretado, donde se definen las competencias, niveles y resultados de aprendizaje que la asignatura o módulo desarrolla.

| Competencia Especifica y/o Genérica   | 1.3 Domina los fundamentos de la especialidad como procesos de separación, transferencia de energías, conminución, cinética y reactores químicos necesarios para el diseño de procesos minerales.                                                                                                                 |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nivel de Desarrollo de la competencia | 1.3.2 Analiza críticamente problemas de las ciencias de la especialidad que faciliten la resolución de problemas en el ámbito profesional.                                                                                                                                                                        |
| Resultado/s de Aprendizaje            | 1.3.2.3. Soluciona problemas asociados a los mecanismos de transferencia de calor (leyes de Fourier, Newton y Stefan-Boltzmann), involucrados en los procesos de minerales.  1.3.2.4. Soluciona problemas asociados al diseño de intercambiadores de calor y evaporadores relacionados con procesos de minerales. |

#### Unidad de Aprendizaje 1. Introducción a la Transferencia de Energía Calorífica

- 1.1 Introducción y Conceptos Básicos
- 1.2 La transferencia de calor en la Ingeniería de Procesos de Minerales
- 1.3 Mecanismos de transferencia de calor
- 1.4 Mecanismos simultáneos de transferencia de calor

#### Unidad de Aprendizaje 2. Transferencia de Calor por Conducción

- 2.1 Conducción de calor en estado estacionario
- 2.2 Combinación de conducción-convección
- 2.3 Aislantes
- 2.4 Aletas
- 2.5 Conducción transiente
- 2.6 Resolución de problemas mediante diferencias finitas y/o elementos finitos

# Unidad de Aprendizaje 3. Transferencia de Calor por Convección

- 3.1 Convección natural
- 3.1.2 Superficies horizontales
- 3.1.3 Superficies verticales
- 3.1.4 Convección natural desde cuerpo caliente hacia el aire
- 3.1.5 Fluidos entre dos superficies
- 3.2 Convección forzada
- 3.2.1 Convección forzada en el interior de tubos
- 3.2.2 Convección forzada por el exterior de tubos
- 3.3.3 Convección forzada en secciones no circulares
- 3.3.4 Convección forzada hacia partículas esféricas

#### Unidad de Aprendizaje 4. Transferencia de Calor por Radiación

- 4.1 Introducción
- 4.2 Leyes de radiación
- 4.3 Combinación radiación-convección
- 4.3.1 Espectro de radiación y radiación térmica

- 4.4 Factores de observación
- 4.4.1 Factor de observación para planos negros parales infinitos
- 4.4.2 Factor de observación para planos grises paralelos infinitos
- 4.4.3 Factor de observación entre planos paralelos directamente opuestos
- 4.4.4 Factor de observación para rectángulos advacentes perpendiculares

#### Unidad de Aprendizaje 5. Intercambiadores de Calor

- 5.1 Introducción
- 5.2 Intercambiadores concéntricos
- 5.3 Intercambiadores tubo y coraza
- 5.4 Intercambiadores de flujo cruzado
- 5.5 Intercambiadores de placas
- 5.6 Metodología de análisis y selección de intercambiadores
- 5.6.1 Diferencia de temperatura logarítmica media
- 5.6.1.2 Factores de ensuciamiento
- 5.6.1.3 Factor de corrección para multipasos y flujo cruzado
- 5.6.2 Número de unidades de transferencia
- 5.6.2.1 Efectividad

#### Unidad de Aprendizaje 6. Evaporadores

- 6.1 Introducción
- 6.2 Evaporadores industriales
- 6.3 Componentes básicos de un evaporador
- 6.4 Tipos de evaporadores
- 6.4.1 Evaporador de circulación natural de tubos cortos horizontales
- 6.4.2 Evaporador de circulación natural de tubos cortos verticales
- 6.4.3 Evaporadores de circulación forzada
- 6.4.4 Evaporador de película ascendente y descendente
- 6.5 Evaporadores simple efecto
- 6.6 Evaporadores múltiple efecto
- 6.7 Metodología de análisis y selección de evaporadore

# ESTRATEGIAS DIDÁCTICAS Y PROCEDIMIENTOS DE EVALUACIÓN

| RESULTADOS DE<br>APRENDIZAJE                                                                                                                                                | ESTRATEGIA DIDÁCTICA                                                                                                                                                | ACTIVIDAD DE EVALUACIÓN                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| 1.3.2.3. Soluciona problemas asociados a los mecanismos de transferencia de calor (leyes de Fourier, Newton y Stefan-Boltzmann), involucrados en los procesos de minerales. | <ul> <li>Clases expositivas</li> <li>Ejemplos de la vida<br/>cotidiana y en la<br/>industria</li> <li>-Lecturas sugeridas</li> <li>-Resolución problemas</li> </ul> | <ul> <li>Exposición oral</li> <li>Informes y tareas</li> <li>Pruebas</li> <li>Laboratorio</li> </ul> |  |  |
| 1.3.2.4. Soluciona problemas asociados al diseño de intercambiadores de calor y evaporadores relacionados con procesos de minerales.                                        | <ul><li>Clases expositivas</li><li>Lecturas sugeridas</li><li>Resolución problemas</li></ul>                                                                        | <ul><li>Exposición oral</li><li>Informes y tareas</li><li>Pruebas</li><li>Laboratorio</li></ul>      |  |  |

# BIBLIOGRAFÍA.

#### **BIBLIOGRAFÍA BÁSICA**

- -Yunus A.Cengel. (2007) Transferencia de Calor y Masa (3ra Ed.); España: Editorial McGraw-Hill.
- Yunus A.Cengel. (2007) HEAT TRANSFER A Practical Approach. Second edition McGraw-Hill.
- -Louis Theodore (2011) Heat transfer Applications for the practicing Engineer; USA. Editorial John Wiley &Sons.Inc.

# **Bibliografía Complementaria**

- -Donald Kern. (2007) Procesos de Transferencia de Calor; España: Editorial Continental S.A. (660.28427 KER 2007)
- -Christie J.Geankoplis. (2006) Procesos de Transporte y Operaciones Unitarias: España; Editorial Continental S.A. (660.2842 GEA 2006)
- -Coulson & Richardson´s.(2000) Chemical Engineering Design; USA: Editorial Butterworth Heinemann (660 C855 c3 2000)
- -Warren L.MC Cabe. (2007) Operaciones Unitarias de Ingeniería Química: España; McGraw-Hill (660.284 MCC)

#### **SOFTWARE**

**EES SOFTWARE (Engineering Equation Solver)**