

PROGRAMA DE ASIGNATURA

ANTECEDENTES GENERALES

Carrera	Licenciatura en Ciencias, mención Física y Astrofísica			
Nombre de la asignatura	Mecánica cuántica II			
Código de la asignatura	LFAFS82			
Año/Semestre	4TO AÑO / II SEMESTRE			
Coordinador Académico	Jhon González			
Equipo docente	Jhon González			
Área de formación	Profesional			
Créditos SCT	7			
Horas de dedicación	Actividad	Р	Trabajo	С
	presencial		autónomo	
Fecha de inicio	25 de agosto de 2025			
Fecha de término	diciembre 2025			

DESCRIPCIÓN DE LA ASIGNATURA

Asignatura de naturaleza profesional, obligatoria y teórico-práctica. Tributa a la competencia específica del dominio "Aplicación de las Ciencias Básicas": Aplica conocimientos de matemática avanzada, a través de un análisis crítico y del pensamiento lógico-racional, para la búsqueda de soluciones a problemas de la física y astrofísica, en su nivel estándar de egreso: Resuelve problemas de las disciplinas fundantes para sustentar su futuro desempeño profesional con una visión de desarrollo sostenible. Además, tributa a la competencia genérica del dominio Formación Integral: Comunicación: Comunica sus ideas interpretando y utilizando el significado verbal, no verbal y paraverbal para relacionarse eficazmente en el entorno social, en su nivel estándar de egreso: Comunica e interpreta tipos de textos con sentido completo, pertinentes a la profesión y al contexto y a la situación, con diversos recursos expresivos.

RESULTADOS DE APRENDIZAJE

Los resultados de aprendizaje que desarrolla son:

1.1.3.25 Resuelve problemas del oscilador armónico cuántico en una dimensión, como así también los operadores de subida y bajada.

- 1.1.3.26 Calcula la función de onda del electrón en un átomo de hidrógeno.
- 1.1.3.27 Aplica la teoría de perturbaciones para resolver de forma aproximada el problema de encontrar estados basales de energía y sus energías asociadas. 5.1.3.1 Escribe ideas con sentido y propósito, acorde a contextos y situaciones profesionales, usando diversos recursos expresivos formales.

UNIDADES DE APRENDIZAJE

Unidad I: Revisión del oscilador armónico cuántico (Semanas 1–2)

- Repaso de la ecuación de Schrödinger para el oscilador armónico unidimensional.
- Operadores de creación y aniquilación.
- Método algebraico y extensión al oscilador en tres dimensiones.
- Aplicaciones físicas relevantes.

Unidad II: Momento angular en mecánica cuántica (Semanas 3–4)

- Operadores de momento angular orbital.
- Relaciones de conmutación y álgebra del momento angular.
- Representación matricial de los operadores.
- Armónicos esféricos y su interpretación física.

Unidad III: Problemas en tres dimensiones (Semanas 5–7)

- Solución de la ecuación de Schrödinger en coordenadas esféricas.
- Potencial central y separación de variables.
- Números cuánticos y degeneración de niveles de energía.
- Aplicaciones al átomo de hidrógeno.

Unidad IV: Suma de momento angular (Semanas 8–9)

- Acoplamiento de dos momentos angulares.
- Coeficientes de Clebsch–Gordan.
- Espín y espín-orbita.
- Aplicaciones a sistemas de dos partículas.

Unidad V: Partículas idénticas y estadística cuántica (Semanas 10–11)

- Principio de indistinguibilidad de partículas.
- Simetrización y antisimetrización de funciones de onda.
- Bosones y fermiones.
- Principio de exclusión de Pauli.
- Aplicaciones a sistemas atómicos y sólidos.

Unidad VI: Teoría de perturbaciones y aproximaciones variacionales (Semanas 12–14)

- Teoría de perturbaciones independiente del tiempo (no degenerada y degenerada).
- Teoría de perturbaciones dependiente del tiempo: regla de oro de Fermi.
- Método variacional para estados fundamentales.
- Aproximación WKB y aplicaciones al efecto túnel.

METODOLOGÍA Y EVALUACIÓN

Enfoque didáctico. Se declara que las estrategias didácticas son centradas en el estudiante y con orientación al desarrollo de competencias.

RESULTADOS DE APRENDIZAJE	ESTRATEGIA DIDÁCTICA / TÉCNICA DIDÁCTICA	PROCEDIMIENTOS DE EVALUACIÓN: INSTRUMENTOS
1.1.3.25 Resuelve problemas del oscilador armónico cuántico en una dimensión, como así también los operadores de subida y bajada.	Resolución colaborativa de problemas matemáticos aplicados. Discusión guiada sobre propiedades de operadores de creación y aniquilación.	Tareas evaluadas, ejercicios en clase, preguntas orales, rúbrica de exposición.
1.1.3.26 Calcula la función de onda del electrón en un átomo de hidrógeno.	Desarrollo de ejercicios guiados sobre la ecuación de Schrödinger en 3D. Exposición grupal con apoyo de representaciones gráficas.	Resolución escrita de problemas, seguimiento en clase, rúbrica de presentación.
1.1.3.27 Aplica la teoría de perturbaciones para resolver de forma aproximada el problema de encontrar estados basales de energía y sus energías asociadas.	Análisis de casos y resolución de ejemplos con perturbaciones y métodos variacionales. Actividades prácticas con software o cálculo simbólico.	Actividades en grupo, resolución de problemas, ejercicios gráficos, evaluación de participación activa.
5.1.3.1 Escribe ideas con sentido y propósito, acorde a contextos y situaciones profesionales, usando diversos recursos expresivos formales.	Elaboración de informes técnicos y presentaciones orales sobre la resolución de problemas cuánticos. Retroalimentación entre pares.	Informe escrito con rúbrica de comunicación científica, rúbrica de exposición oral, evaluación de coevaluación.

^{*} Se proponen de manera general. Se detalla en Guía de Aprendizaje.

Se asume como condición que debe existir consistencia entre la estrategia didáctica y los procedimientos de evaluación.

BIBLIOGRAFÍA.

- [1] Quantum Mechanics (Vol 1), Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe. Wiley-Interscience, 2nd edition 2019.
- [2] Quantum Mechanics (Vol 2), Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe. Wiley-Interscience, 2nd edition 2019.
- [3] Quantum Mechanics: Concepts and applications, Nouredine Zettili. John Wiley & Sons, 3rd edition 2022.

[4] Introduction to Quantum Mechanics, David J. Griffiths. Cambridge University Press, 3rd edition 2018.